##plugins.themes.bootstrap3.article.main##

This study evaluated the time-to-time aerobic and anaerobic exercise intensities, calculated using the Global Positioning System (GPS), using laboratory measurements of individual physical fitness throughout the game in each female youth football player. In addition, we examine if the anaerobic exercise index calculated by only GPS data presents this evaluation to examine its validity. In the laboratory, the oxygen uptake (V̇O2) matched with moving speed was identified during an incremental exercise test on the treadmill, and the ventilatory (anaerobic) threshold was also analysed to identify individual aerobic and anaerobic exercise intensities. Using these laboratory data, time-to-time changes in individual relative running intensity (aerobic and anaerobic) were visualised from individual GPS data during a football game, and an individual’s sprint output (ability) during the game was evaluated. An index of running intensity and the percentage of anaerobic exercise over the game provided by the GPS software (equivalent distance index [%EDI] and anaerobic index [AI]) did not present the actual individual exercise intensity (ICC(2,1), absolute agreement=−0.031; P=0.596) and percentage of anaerobic exercise (ICC(2,1), absolute agreement=−0.003; P=0.698) values during the game, respectively. These findings suggest that only GPS measurement cannot present the individual actual exercise intensity during a football game because of different individual fitness levels to the same running speed.

References

  1. Akyildiz, Z., Nobari, H., Gonzalez-Fernandez, F. T., Praca, G. M., Sarmento, H., Guler, A. H., Figueiredo, A. J. (2022). Variations in the physical demands and technical performance of professional soccer teams over three consecutive seasons. Sci Rep, 12(1), 2412. doi: 10.1038/s41598-022-06365-7.
     Google Scholar
  2. Ali, A., & Farrally, M. (1991). Recording soccer players' heart rates during matches. J Sports Sci, 9(2), 183–189. doi: 10.1080/02640419108729879.
     Google Scholar
  3. Almeida, A. M., Santos Silva, P. R., Pedrinelli, A., & Hernandez, A. J. (2018). Aerobic fitness in professional soccer players after anterior cruciate ligament reconstruction. PLoS One, 13(3), e0194432. doi: 10.1371/journal.pone.0194432.
     Google Scholar
  4. Bangsbo, J., Norregaard, L., & Thorso, F. (1991). Activity profile of competition soccer. Can J Sport Sci, 16(2), 110-116.
     Google Scholar
  5. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307–310.
     Google Scholar
  6. Dasa, M. S., Friborg, O., Kristoffersen, M., Pettersen, G., Sundgot-Borgen, J., & Rosenvinge, J. H. (2022). Accuracy of tracking devices' ability to assess exercise energy expenditure in professional female soccer players: implications for quantifying energy availability. Int J Environ Res Public Health, 19(8). doi: 10.3390/ijerph19084770.
     Google Scholar
  7. Helgerud, J., Engen, L. C., Wisloff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Med Sci Sports Exerc, 33(11), 1925–1931. doi: 10.1097/00005768-200111000-00019.
     Google Scholar
  8. Jagim, A. R., Askow, A. T., Carvalho, V., Murphy, J., Luedke, J. A., & Erickson, J. L. (2022). Seasonal accumulated workloads in collegiate women's soccer: a comparison of starters and reserves. J Funct Morphol Kinesiol, 7(1). doi: 10.3390/jfmk7010011.
     Google Scholar
  9. Marini, C. F., Sisti, D., Skinner, J. S., Sarzynski, M. A., Bouchard, C., Amatori, S., Lucertini, F. (2022). Effect of individual characteristics and aerobic training on the %HRR-%V̇O2R relationship. Eur J Sport Sci, Latest artricle (onleline publication, Oct 16; 2022 1–12). doi: 10.1080/17461391.2022.2113441.
     Google Scholar
  10. Medbo, J. I., Mohn, A. C., Tabata, I., Bahr, R., Vaage, O., & Sejersted, O. M. (1988). Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol (1985), 64(1), 50–60. doi: 10.1152/jappl.1988.64.1.50.
     Google Scholar
  11. Mohr, M., Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci, 21(7), 519–528. doi: 10.1080/0264041031000071182.
     Google Scholar
  12. Mohr, M., Krustrup, P., Nybo, L., Nielsen, J. J., & Bangsbo, J. (2004). Muscle temperature and sprint performance during soccer matches--beneficial effect of re-warm-up at half-time. Scand J Med Sci Sports, 14(3), 156–162. doi: 10.1111/j.1600-0838.2004.00349.x.
     Google Scholar
  13. Moss, S. L., Randell, R. K., Burgess, D., Ridley, S., C, O. C., Allison, R., & Rollo, I. (2021). Assessment of energy availability and associated risk factors in professional female soccer players. Eur J Sport Sci, 21(6), 861–870. doi: 10.1080/17461391.2020.1788647.
     Google Scholar
  14. Ogoh, S., Ainslie, P. N., & Miyamoto, T. (2009). Onset responses of ventilation and cerebral blood flow to hypercapnia in humans: rest and exercise. J Appl Physiol (1985), 106(3), 880–886. doi: 10.1152/japplphysiol.91292.2008.
     Google Scholar
  15. Oxendale, C. L., Highton, J., & Twist, C. (2017). Energy expenditure, metabolic power and high speed activity during linear and multi-directional running. J Sci Med Sport, 20(10), 957–961. doi: 10.1016/j.jsams.2017.03.013.
     Google Scholar
  16. Reed, J. L., De Souza, M. J., & Williams, N. I. (2013). Changes in energy availability across the season in Division I female soccer players. J Sports Sci, 31(3), 314–324. doi: 10.1080/02640414.2012.733019.
     Google Scholar
  17. Rienzi, E., Drust, B., Reilly, T., Carter, J. E., & Martin, A. (2000). Investigation of anthropometric and work-rate profiles of elite South American international soccer players. J Sports Med Phys Fitness, 40(2), 162–169.
     Google Scholar
  18. Rodriguez-Fernandez, A., Sanchez-Sanchez, J., Ramirez-Campillo, R., Nakamura, F. Y., Rodriguez-Marroyo, J. A., & Villa-Vicente, J. G. (2019). Relationship between repeated sprint ability, aerobic capacity, intermittent endurance, and heart rate recovery in youth soccer players. J Strength Cond Res, 33(12), 3406–3413. doi: 10.1519/JSC.0000000000002193.
     Google Scholar
  19. Santuz, A., Janshen, L., Brull, L., Munoz-Martel, V., Taborri, J., Rossi, S., & Arampatzis, A. (2022). Sex-specific tuning of modular muscle activation patterns for locomotion in young and older adults. PLoS One, 17(6), e0269417. doi: 10.1371/journal.pone.0269417.
     Google Scholar
  20. Stolen, T., Chamari, K., Castagna, C., & Wisloff, U. (2005). Physiology of soccer: an update. Sports Med, 35(6), 501–536. doi: 10.2165/00007256-200535060-00004.
     Google Scholar
  21. Storniolo, J. L., Esposti, R., & Cavallari, P. (2019). Heart rate kinetics and sympatho-vagal balance accompanying a maximal sprint test. Front Psychol, 10, 2950. doi: 10.3389/fpsyg.2019.02950.
     Google Scholar
  22. Ulupinar, S., Ozbay, S., Gencoglu, C., Franchini, E., Kishali, N. F., & Ince, I. (2021). Effects of sprint distance and repetition number on energy system contributions in soccer players. J Exerc Sci Fit, 19(3), 182–188. doi: 10.1016/j.jesf.2021.03.003.
     Google Scholar
  23. Wasserman, K., Whipp, B. J., Koyl, S. N., & Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol, 35(2), 236–243. doi: 10.1152/jappl.1973.35.2.236.
     Google Scholar
  24. Wragg, C. B., Maxwell, N. S., & Doust, J. H. (2000). Evaluation of the reliability and validity of a soccer-specific field test of repeated sprint ability. Eur J Appl Physiol, 83(1), 77–83. doi: 10.1007/s004210000246.
     Google Scholar