Acute Effects of Marathon Running on Lung Function, Lung Mechanics, and Inflammation
##plugins.themes.bootstrap3.article.main##
This study investigated the influence of the marathon on lung function, mechanics, and pulmonary inflammation. Twenty-eight male amateur marathon runners (42.1±6.2 years) were evaluated before and immediately after marathon. Pulmonary function and mechanics were assessed using spirometry and impulse oscillometry, respectively, whereas fatigue of the respiratory muscles by manovacuometry and lung inflammation by fractional exhaled nitric oxide (FeNO). Marathon induced a significant reduction in the lung function as compared to baseline values: FVC (4.81±0.72 vs 4.67±0.62, p=0.0095), VC IN (4.81±0.72 vs 4.67±0.62, p=0.009), FEV1 (3.83±0.62 vs 3.72±0.59, p=0.0232), and FEV6 (4.87±0.68 vs 4.57±0.63, p=0.0006), as well as an impairment in the lung mechanics in comparison to baseline values: reduced pulmonary impedance (Z5Hz; 2.96±1.36 vs 2.67±1.11; p=0.0305), reduced resistance of the whole respiratory system (R5Hz; 2.76±1.27 vs 2.5±1.08; p=0.0388) and pulmonary reactance (X5Hz; -1.05±0.55 vs -0.91±0.36; p=0.0101) and of resistance of proximal airways (R5Hz; 1.26±0.73 vs 1.06±0.86; p= 0.0377). In addition, maximal inspiratory (MIP; 94.14±41.88 vs 72.52±25.50; p=0.0023) and expiratory (MEP; 99.31±31.84 vs 91.29±19.94; p=0.0454) pressures, as well as FeNO levels were lower after the marathon than values pre-marathon (p=0.0359). Marathon running causes an acute disturbance in lung function and mechanics and compromises respiratory muscle strength.
References
-
Abbasi A, Vieira R. P, Northoff H. (2015). Letter to the editor: the evidence of exercise-induced bronchoconstriction in endurance runners; genetic basis and gender differences. Exercise Immunology Review, 21, 186–8.
Google Scholar
1
-
Bickel S., Popler J., Lesnick B., Eid N. (2014). Impulse oscillometry: interpretation and practical applications. Chest Journal, 146, 841–7.
Google Scholar
2
-
Bickel S., Popler J., Lesnick B., Eid N. (2014). Impulse oscillometry: interpretation and practical applications. Chest Journal, 146(3), 841–847.
Google Scholar
3
-
Bussotti M., Di Marco S., Marchese G. (2014). Respiratory disorders in endurance athletes - how much do they really have to endure? Journal of Sports Medicine, 5, 47–63.
Google Scholar
4
-
Bussotti M., Marchese G., di Marco S. (2005). Respiratory disorders in endurance athletes by impulse oscillometry and spirometry following eucapnic voluntary hyperventilation. Canadian Respiratory Journal, 12, 257–63.
Google Scholar
5
-
Evans T. M., Rundell K. W., Beck K. C., Levine A. M., Baumann J. M. (2005). Airway narrowing measured by spirometry and impulse oscillometry following room temperature and cold temperature exercise. Chest Journal, 128, 2412–19.
Google Scholar
6
-
Evans T. M., Rundell K. W., Beck K. C., Levine A. M., Baumann J. M. (2006). Impulse oscillometry is sensitive to bronchoconstriction after eucapnic voluntary hyperventilation or exercise. Journal of Asthma, 43, 49–55.
Google Scholar
7
-
Farré R., Hall G. L., Ioan I., Irvin C. G., Kaczka D. W., Kaminsky D. A., et al. (2020). Technical standards for respiratory oscillometry. European Respiratory Journal. Feb 27;55(2), 1900753.
Google Scholar
8
-
Giuseppe S., Nadia M., Rugia S., SalvatoreV., Malgorzata D., Andrea T., et al. (2016). Exhaled and non-exhaled non-invasive markers for assessment of respiratory inflammation in patients with stable COPD and healthy smokers. Journal of Breath Research, 10(1), article 017102.
Google Scholar
9
-
King G. G., Bates J., Berger K. I., Peter C., Pedro L. M., Raffaele L. D., et al. (2020). Technical standards for respiratory oscillometry. European Respiratory Journal, 55(2), 1900753.
Google Scholar
10
-
Laveneziana P., Palange P., ERS. (2012). Physical activity, nutritional status and systemic inflammation in COPD. European Respiratory Journal, 40(3), 522–9.
Google Scholar
11
-
Liu X., Wu G., Shi D. Rong Z., HuiJun Z., Biao C., et al. (2015). Effects of nitric oxide on notexin-induced muscle inflammatory responses. International Journal of Biological Sciences, 11(2), 156–167.
Google Scholar
12
-
Miller M. R., Crapo R., Hankinson J., Brusasco V., Burgos F., Casaburi R., et al. (2005). General considerations for lung function testing. European Respiratory Journal, 26(1), 153–61.
Google Scholar
13
-
Miller M. R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., et al. (2005). Standardisation of spirometry. European Respiratory Journal, 26, 319–38.
Google Scholar
14
-
Morris Z. Q., Coz A., Starosta D. (2013). An isolated reduction of the FEV3/FVC ratio is an indicator of mild lung injury. Chest Journal, 144(4), 1117–1123.
Google Scholar
15
-
Mummadi S. R. & P. Y. Hahn P. Y. (2016). Update on exhaled nitric oxide in clinical practice. Chest, vol. 149, no. 5, pp. 1340–1344.
Google Scholar
16
-
Oliver J. P., Les A., Andras B., James H. H. (2016). The role of impulse oscillometry in detecting airway dysfunction in athletes. Journal of Asthma, 53(1), 62–8.
Google Scholar
17
-
Pavord I. D., Pizzichini M. M., Pizzichini E., Hargreave F. E. (1997). The use of induced sputum to investigate airway inflammation. Thorax, 52(6), 498–501.
Google Scholar
18
-
Pereira C. A. C. Spirometry. Journal of Pneumology. 28(Supl 3) S1-S82, 2002. Portuguese.
Google Scholar
19
-
Pisi R., Aiello M., Frizzelli A., Calzetta L., Marchi L., Bertorelli G., Pisi G., Chetta A. (2021). Detection of Small Airway Dysfunction in Asymptomatic Smokers with Preserved Spirometry: The Value of the Impulse Oscillometry System. International Journal of Chronic Obstructive Pulmonary Disease, 16, 2585–2590.
Google Scholar
20
-
Romer L. M. & Polkey M. I. (2008). Exercise-induced respiratory muscle fatigue: implications for performance. Journal of Applied Physiology, 104, 879–88.
Google Scholar
21
-
Rundell K. W., Evans T. M., Baumann J. M., Kertesz M. F. (2005). Lung function measured by impulse oscillometry and spirometry following eucapnic voluntary hyperventilation. Canadian Respiratory Journal, 12(5), 257–63.
Google Scholar
22
-
Scott H. A., Latham J. R., Callister R., Pretto J. J., Baines K., Saltos N., et al. (2015). Acute exercise is associated with reduced exhaled nitric oxide in physically inactive adults with asthma. Annals of Allergy, Asthma & Immunology, 114(6), 470–9.
Google Scholar
23
-
Sierra A. P., Oliveira-Junior M. C., Almeida F. M., Benetti M., Oliveira R., Felix S. N., et al. (2019). Impairment on Cardiopulmonary Function after Marathon: Role of Exhaled Nitric Oxide. Oxidative Medicine and Cellular Longevity, 2019:5134360.
Google Scholar
24
-
Smith H., Reinhold P., Goldman M. (2005). Forced oscillation technique and impulse oscillometry. European Respiratory Monograph, 31, 72–105.
Google Scholar
25
-
Tiller N. B. (2019). Pulmonary and Respiratory Muscle Function in Response to Marathon and Ultra‑Marathon Running: A Review. Sports Medicine, 49, 1031–1041.
Google Scholar
26
Most read articles by the same author(s)
-
Elaine T. Santos-Maciel,
Maysa A. R. Brandão-Rangel,
Anamei Silva-Reis,
Renilson Moares-Ferreira,
Victor H. Souza-Palmeira,
Claudio R. Frison,
Helida C. Aquino-Santos,
Rodolfo P. Vieira,
Regiane Albertini,
Para-Cyclists Present Impaired Lung Function and Mechanics Independent of Peripheral and Respiratory Muscle Strength , European Journal of Sport Sciences: Vol. 2 No. 1 (2023)