Acute Effects of Marathon Running on Lung Function, Lung Mechanics, and Inflammation

##plugins.themes.bootstrap3.article.main##

  •   Thiago Gibson

  •   Ana Paula Sierra

  •   Renilson

  •   Maysa A. R. Brandão-Rangel

  •   Anamei Silva-Reis

  •   Tiago A. de Lima

  •   Luis Vicente

  •   Maria Fernanda

  •   Regiane Albertini

  •   Andre L. L. Bachi

  •   Rodolfo P. Vieira

Abstract

This study investigated the influence of the marathon on lung function, mechanics, and pulmonary inflammation. Twenty-eight male amateur marathon runners (42.1±6.2 years) were evaluated before and immediately after marathon. Pulmonary function and mechanics were assessed using spirometry and impulse oscillometry, respectively, whereas fatigue of the respiratory muscles by manovacuometry and lung inflammation by fractional exhaled nitric oxide (FeNO). Marathon induced a significant reduction in the lung function as compared to baseline values: FVC (4.81±0.72 vs 4.67±0.62, p=0.0095), VC IN (4.81±0.72 vs 4.67±0.62, p=0.009), FEV1 (3.83±0.62 vs 3.72±0.59, p=0.0232), and FEV6 (4.87±0.68 vs 4.57±0.63, p=0.0006), as well as an impairment in the lung mechanics in comparison to baseline values: reduced pulmonary impedance (Z5Hz; 2.96±1.36 vs 2.67±1.11; p=0.0305), reduced resistance of the whole respiratory system (R5Hz; 2.76±1.27 vs 2.5±1.08; p=0.0388) and pulmonary reactance (X5Hz; -1.05±0.55 vs -0.91±0.36; p=0.0101) and of resistance of proximal airways (R5Hz; 1.26±0.73 vs 1.06±0.86; p= 0.0377). In addition, maximal inspiratory (MIP; 94.14±41.88 vs 72.52±25.50; p=0.0023) and expiratory (MEP; 99.31±31.84 vs 91.29±19.94; p=0.0454) pressures, as well as FeNO levels were lower after the marathon than values pre-marathon (p=0.0359). Marathon running causes an acute disturbance in lung function and mechanics and compromises respiratory muscle strength.


Keywords: impulse oscillometry, inflammation, lung function, lung mechanics, marathon, nitric oxide

References

Abbasi A, Vieira R. P, Northoff H. (2015). Letter to the editor: the evidence of exercise-induced bronchoconstriction in endurance runners; genetic basis and gender differences. Exercise Immunology Review, 21, 186–8.

Bickel S., Popler J., Lesnick B., Eid N. (2014). Impulse oscillometry: interpretation and practical applications. Chest Journal, 146, 841–7.

Bickel S., Popler J., Lesnick B., Eid N. (2014). Impulse oscillometry: interpretation and practical applications. Chest Journal, 146(3), 841–847.

Bussotti M., Di Marco S., Marchese G. (2014). Respiratory disorders in endurance athletes - how much do they really have to endure? Journal of Sports Medicine, 5, 47–63.

Bussotti M., Marchese G., di Marco S. (2005). Respiratory disorders in endurance athletes by impulse oscillometry and spirometry following eucapnic voluntary hyperventilation. Canadian Respiratory Journal, 12, 257–63.

Evans T. M., Rundell K. W., Beck K. C., Levine A. M., Baumann J. M. (2005). Airway narrowing measured by spirometry and impulse oscillometry following room temperature and cold temperature exercise. Chest Journal, 128, 2412–19.

Evans T. M., Rundell K. W., Beck K. C., Levine A. M., Baumann J. M. (2006). Impulse oscillometry is sensitive to bronchoconstriction after eucapnic voluntary hyperventilation or exercise. Journal of Asthma, 43, 49–55.

Farré R., Hall G. L., Ioan I., Irvin C. G., Kaczka D. W., Kaminsky D. A., et al. (2020). Technical standards for respiratory oscillometry. European Respiratory Journal. Feb 27;55(2), 1900753.

Giuseppe S., Nadia M., Rugia S., SalvatoreV., Malgorzata D., Andrea T., et al. (2016). Exhaled and non-exhaled non-invasive markers for assessment of respiratory inflammation in patients with stable COPD and healthy smokers. Journal of Breath Research, 10(1), article 017102.

King G. G., Bates J., Berger K. I., Peter C., Pedro L. M., Raffaele L. D., et al. (2020). Technical standards for respiratory oscillometry. European Respiratory Journal, 55(2), 1900753.

Laveneziana P., Palange P., ERS. (2012). Physical activity, nutritional status and systemic inflammation in COPD. European Respiratory Journal, 40(3), 522–9.

Liu X., Wu G., Shi D. Rong Z., HuiJun Z., Biao C., et al. (2015). Effects of nitric oxide on notexin-induced muscle inflammatory responses. International Journal of Biological Sciences, 11(2), 156–167.

Miller M. R., Crapo R., Hankinson J., Brusasco V., Burgos F., Casaburi R., et al. (2005). General considerations for lung function testing. European Respiratory Journal, 26(1), 153–61.

Miller M. R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., et al. (2005). Standardisation of spirometry. European Respiratory Journal, 26, 319–38.

Morris Z. Q., Coz A., Starosta D. (2013). An isolated reduction of the FEV3/FVC ratio is an indicator of mild lung injury. Chest Journal, 144(4), 1117–1123.

Mummadi S. R. & P. Y. Hahn P. Y. (2016). Update on exhaled nitric oxide in clinical practice. Chest, vol. 149, no. 5, pp. 1340–1344.

Oliver J. P., Les A., Andras B., James H. H. (2016). The role of impulse oscillometry in detecting airway dysfunction in athletes. Journal of Asthma, 53(1), 62–8.

Pavord I. D., Pizzichini M. M., Pizzichini E., Hargreave F. E. (1997). The use of induced sputum to investigate airway inflammation. Thorax, 52(6), 498–501.

Pereira C. A. C. Spirometry. Journal of Pneumology. 28(Supl 3) S1-S82, 2002. Portuguese.

Pisi R., Aiello M., Frizzelli A., Calzetta L., Marchi L., Bertorelli G., Pisi G., Chetta A. (2021). Detection of Small Airway Dysfunction in Asymptomatic Smokers with Preserved Spirometry: The Value of the Impulse Oscillometry System. International Journal of Chronic Obstructive Pulmonary Disease, 16, 2585–2590.

Romer L. M. & Polkey M. I. (2008). Exercise-induced respiratory muscle fatigue: implications for performance. Journal of Applied Physiology, 104, 879–88.

Rundell K. W., Evans T. M., Baumann J. M., Kertesz M. F. (2005). Lung function measured by impulse oscillometry and spirometry following eucapnic voluntary hyperventilation. Canadian Respiratory Journal, 12(5), 257–63.

Scott H. A., Latham J. R., Callister R., Pretto J. J., Baines K., Saltos N., et al. (2015). Acute exercise is associated with reduced exhaled nitric oxide in physically inactive adults with asthma. Annals of Allergy, Asthma & Immunology, 114(6), 470–9.

Sierra A. P., Oliveira-Junior M. C., Almeida F. M., Benetti M., Oliveira R., Felix S. N., et al. (2019). Impairment on Cardiopulmonary Function after Marathon: Role of Exhaled Nitric Oxide. Oxidative Medicine and Cellular Longevity, 2019:5134360.

Smith H., Reinhold P., Goldman M. (2005). Forced oscillation technique and impulse oscillometry. European Respiratory Monograph, 31, 72–105.

Tiller N. B. (2019). Pulmonary and Respiratory Muscle Function in Response to Marathon and Ultra‑Marathon Running: A Review. Sports Medicine, 49, 1031–1041.

##plugins.themes.bootstrap3.article.details##

How to Cite
Gibson Alves , T. G., Sierra, A. P. R., Moraes Ferreira, R. ., Brandão-Rangel, M. A. R., Silva-Reis, A., de Lima, T. A., de Oliveira, L. V. F., Boaventura, M. F. C., Albertini, R., Bachi, A. L. L., & Vieira, R. P. (2022). Acute Effects of Marathon Running on Lung Function, Lung Mechanics, and Inflammation. European Journal of Sport Sciences, 1(6), 13–18. https://doi.org/10.24018/ejsport.2022.1.6.40