##plugins.themes.bootstrap3.article.main##

Background: Exercise has positive effects on overall health and reduces risk for several chronic diseases. Diverse program modalities are growing as a potential intervention to improve physiological and psychological outcomes. Purpose: The present study examines the effect of a 10-week sprint interval training (SIT) and resistance training program on physiological and psychological variables in young women.

Methods: 37 women (M Age = 24.9±4.3, BMI = 24.7±4.3) participated in a 10-week exercise intervention, consisting of a SIT treadmill protocol and resistance training three times a week for a total of 30 sessions. Participants were randomly assigned to one of two SIT programs (0% incline and 6% incline) and assessed at baseline and post testing for body composition, muscular strength and aerobic fitness. Enjoyment was assessed via a semi-structured interview following the intervention.

Results: There were no significant group by time interactions. There was a significant reduction in body fat percentage (p<0.001, Δ 2.23% & 2.52% respectively), as well as a significant increase in lean mass (p<0.001, Δ 2.59 kg & 2.56 kg, respectively), bench press (p<0.001, Δ 25.87 kg & 24.4 kg, respectively), back squat (p<0.001, Δ 69.7 kg & 64.3 kg, respectively) following the intervention for both groups. There were no significant changes in aerobic fitness, kcal intake, and body fat mass. Overall participants reported enjoying the protocol but expressed apprehension of continuing the exercise on their own.

Conclusions: Our current data suggest that a SIT and resistance program accounts for positive changes on physiological and psychological variables like percentage of body fat reductions and lean mass increments, muscular strength and exercise enjoyment.

References

  1. Aaltonen, S., Leskinen, T., Morris, T., Alen, M., Kaprio, J., Liukkonen, J., & Kujala, U. (2012). Motives for and barriers to physical activity in twin pairs discordant for leisure time physical activity for 30 years. Int J Sports Med, 33(2), 157-163. https://doi.org/10.1055/s-0031-1287848.
     Google Scholar
  2. American College Health Association. (2018). American College Health Association-National College Health Assessment II: Reference Group Executive Summary Spring 2018. https://www.acha.org/documents/ncha/NCHA-II_Spring_2018_Reference_Group_Executive_Summary.pdf.
     Google Scholar
  3. American College of Sports Medicine. (2018). ACSM's Health-related Physical Fitness Assessment Manual. Wolters Kluwer. https://books.google.co.cr/books?id=lFO7jwEACAAJ.
     Google Scholar
  4. American College of Sports Medicine. (2021). ACSM's guidelines for exercise testing and prescription. Wolters Kluwer.
     Google Scholar
  5. Atakan, M. M., Li, Y., Koşar Ş, N., Turnagöl, H. H., & Yan, X. (2021). Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int J Environ Res Public Health, 18(13). https://doi.org/10.3390/ijerph18137201.
     Google Scholar
  6. Bartlett, J. D., Close, G. L., MacLaren, D. P., Gregson, W., Drust, B., & Morton, J. P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci, 29(6), 547-553. https://doi.org/10.1080/02640414.2010.545427.
     Google Scholar
  7. Borges, V. R., Naves, J. P. A., Coswig, V. S., de Lira, C. A. B., Steele, J., Fisher, J. P., & Gentil, P. (2019). Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). Br J Sports Med, 53(10), 655-664. https://doi.org/10.1136/bjsports-2018-099928.
     Google Scholar
  8. Boullosa, D., Dragutinovic, B., Feuerbacher, J. F., Benítez-Flores, S., Coyle, E. F., & Schumann, M. (2022). Effects of short sprint interval training on aerobic and anaerobic indices: A systematic review and meta-analysis. Scand J Med Sci Sports. https://doi.org/10.1111/sms.14133.
     Google Scholar
  9. Burgomaster, K. A., Heigenhauser, G. J., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol (1985), 100(6), 2041-2047. https://doi.org/10.1152/japplphysiol.01220.2005.
     Google Scholar
  10. CDC, B. R. F. S. S. (2020). America's Health Rankings analysis of CDC. https://www.americashealthrankings.org/explore/annual/measure/exercise/state/ALL.
     Google Scholar
  11. Chen, C., Finne, E., Kopp, A., & Jekauc, D. (2020). Can Positive Affective Variables Mediate Intervention Effects on Physical Activity? A Systematic Review and Meta-Analysis [Systematic Review]. Frontiers in Psychology, 11(2907). https://doi.org/10.3389/fpsyg.2020.587757.
     Google Scholar
  12. Dahlgren, L.-O., & Fallsberg, M. (1991). Phenomenography as a qualitative approach in social pharmacy research. Journal of Social and Administrative Pharmacy 8(4), 150-156. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-32776.
     Google Scholar
  13. Dempsey, P. C., Owen, N., Biddle, S. J., & Dunstan, D. W. (2014). Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease. Curr Diab Rep, 14(9), 522. https://doi.org/10.1007/s11892-014-0522-0.
     Google Scholar
  14. Edwards, E. S., & Sackett, S. C. (2016). Psychosocial Variables Related to Why Women are Less Active than Men and Related Health Implications. Clin Med Insights Womens Health, 9(Suppl 1), 47-56. https://doi.org/10.4137/CMWH.S34668.
     Google Scholar
  15. Ferley, D., Osborn, R., & Vukovich, M. (2013). The Effects of Incline and Level-Grade High-Intensity Interval Treadmill Training on Running Economy and Muscle Power in Well-Trained Distance Runners. J Strength Cond Res, 28. https://doi.org/10.1519/JSC.0000000000000274.
     Google Scholar
  16. Ferley, D. D., Osborn, R. W., & Vukovich, M. D. (2014). The effects of incline and level-grade high-intensity interval treadmill training on running economy and muscle power in well-trained distance runners. J Strength Cond Res, 28(5), 1298-1309. https://doi.org/10.1519/jsc.0000000000000274.
     Google Scholar
  17. Gaesser, G. A., & Angadi, S. S. (2011). High-intensity interval training for health and fitness: can less be more? J Appl Physiol (1985), 111(6), 1540-1541. https://doi.org/10.1152/japplphysiol.01237.2011.
     Google Scholar
  18. Gell, N. M., & Wadsworth, D. D. (2014). How do they do it: working women meeting physical activity recommendations. Am J Health Behav, 38(2), 208-217. http://www.ncbi.nlm.nih.gov/pubmed/24765681.
     Google Scholar
  19. Gillen, J. B., Martin, B. J., MacInnis, M. J., Skelly, L. E., Tarnopolsky, M. A., & Gibala, M. J. (2016). Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLOS ONE, 11(4), e0154075.
     Google Scholar
  20. Gist, N. H., Fedewa, M. V., Dishman, R. K., & Cureton, K. J. (2014). Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med, 44(2), 269-279. https://doi.org/10.1007/s40279-013-0115-0.
     Google Scholar
  21. Grgic, J., Schoenfeld, B. J., Davies, T. B., Lazinica, B., Krieger, J. W., & Pedisic, Z. (2018). Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med, 48(5), 1207-1220. https://doi.org/10.1007/s40279-018-0872-x.
     Google Scholar
  22. Hall, E. E., Ekkekakis, P., & Petruzzello, S. J. (2002). The affective beneficence of vigorous exercise revisited. Br J Health Psychol, 7(Pt 1), 47-66. https://doi.org/10.1348/135910702169358.
     Google Scholar
  23. Hamer, M., Stamatakis, E., & Steptoe, A. (2014). Effects of substituting sedentary time with physical activity on metabolic risk. Med Sci Sports Exerc, 46(10), 1946-1950. https://doi.org/10.1249/MSS.0000000000000317.
     Google Scholar
  24. Hind, K., Oldroyd, B., & Truscott, J. G. (2011). In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults. Eur J Clin Nutr, 65(1), 140-142. https://doi.org/10.1038/ejcn.2010.190.
     Google Scholar
  25. Hunter, G. R., Weinsier, R. L., Bamman, M. M., & Larson, D. E. (1998). A role for high intensity exercise on energy balance and weight control. Int J Obes Relat Metab Disord, 22(6), 489-493. http://www.ncbi.nlm.nih.gov/pubmed/9665667.
     Google Scholar
  26. Jiménez-Gutiérrez, A., & De Paz, J. A. (2008). Application of the 1RM estimation formulas from the RM in bench press in a group of physically active middle-aged women [Muscular strength; Evaluation; Estimate; Number of repetitions; Women]. Journal of Human Sport and Exercise, 3(1), 13. https://doi.org/10.4100/jhse.2008.31.02.
     Google Scholar
  27. Keating, S. E., Johnson, N. A., Mielke, G. I., & Coombes, J. S. (2017). A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev, 18(8), 943-964. https://doi.org/10.1111/obr.12536.
     Google Scholar
  28. Kilpatrick, M., Kraemer, R., Bartholomew, J., Acevedo, E., & Jarreau, D. (2007). Affective responses to exercise are dependent on intensity rather than total work. Med Sci Sports Exerc, 39(8), 1417-1422. https://doi.org/10.1249/mss.0b013e31806ad73c.
     Google Scholar
  29. Laird, R. H. I., Elmer, D. J., Barberio, M. D., Salom, L. P., Lee, K. A., & Pascoe, D. D. (2016). Evaluation of Performance Improvements After Either Resistance Training or Sprint Interval–Based Concurrent Training. The Journal of Strength & Conditioning Research, 30(11), 3057-3065. https://doi.org/10.1519/jsc.0000000000001412.
     Google Scholar
  30. MacDougall, J. D., Hicks, A. L., MacDonald, J. R., McKelvie, R. S., Green, H. J., & Smith, K. M. (1998). Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985), 84(6), 2138-2142. https://doi.org/10.1152/jappl.1998.84.6.2138.
     Google Scholar
  31. MacInnis, M. J., & Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity. J Physiol, 595(9), 2915-2930. https://doi.org/10.1113/jp273196.
     Google Scholar
  32. Nybo, L., Sundstrup, E., Jakobsen, M. D., Mohr, M., Hornstrup, T., Simonsen, L., Bulow, J., Randers, M. B., Nielsen, J. J., Aagaard, P., & Krustrup, P. (2010). High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc, 42(10), 1951-1958. https://doi.org/10.1249/MSS.0b013e3181d99203.
     Google Scholar
  33. Parfitt, G., & Hughes, S. (2009). The Exercise Intensity–Affect Relationship: Evidence and Implications for Exercise Behavior. Journal of Exercise Science & Fitness, 7(2, Supplement), S34-S41. https://doi.org/https://doi.org/10.1016/S1728-869X(09)60021-6.
     Google Scholar
  34. Parfitt, G., Rose, E. A., & Burgess, W. M. (2006). The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br J Health Psychol, 11(Pt 1), 39-53. https://doi.org/10.1348/135910705X43606.
     Google Scholar
  35. Perri, M. G., Anton, S. D., Durning, P. E., Ketterson, T. U., Sydeman, S. J., Berlant, N. E., Kanasky, W. F., Jr., Newton, R. L., Jr., Limacher, M. C., & Martin, A. D. (2002). Adherence to exercise prescriptions: effects of prescribing moderate versus higher levels of intensity and frequency. Health Psychol, 21(5), 452-458. https://www.ncbi.nlm.nih.gov/pubmed/12211512.
     Google Scholar
  36. Rezzi, R., Ginty, F., Beaumont, M., & Ergun, D. L. (2009). Body composition precision with the Lunar iDXA. Journal of Clinical Densitometry, 12(3), 402-. https://doi.org/DOI: 10.1016/j.jocd.2009.03.006.
     Google Scholar
  37. Roberts, T. J., & Belliveau, R. A. (2005). Sources of mechanical power for uphill running in humans. J Exp Biol, 208(Pt 10), 1963-1970. https://doi.org/10.1242/jeb.01555.
     Google Scholar
  38. Rothney, M. P., Martin, F. P., Xia, Y., Beaumont, M., Davis, C., Ergun, D., Fay, L., Ginty, F., Kochhar, S., Wacker, W., & Rezzi, S. (2012). Precision of GE Lunar iDXA for the measurement of total and regional body composition in nonobese adults. J Clin Densitom, 15(4), 399-404. https://doi.org/10.1016/j.jocd.2012.02.009.
     Google Scholar
  39. Ryan, R. M., Williams, G. C., Patric, H., & Deci, E. L. (2009). Self-Determination Theory and Physical Activity: The Dinamics of Motivation in Development and Wellness. Hellenic Journal of sychology, 6, 107-124. https://selfdeterminationtheory.org/SDT/documents/2009_RyanWilliamsPatrickDeci_HJOP.pdf.
     Google Scholar
  40. Salom Huffman, L., Wadsworth, D. D., McDonald, J. R., Foote, S. J., Hyatt, H., & Pascoe, D. D. (2019). Effects of a Sprint Interval and Resistance Concurrent Exercise Training Program on Aerobic Capacity of Inactive Adult Women. J Strength Cond Res, 33(6), 1640-1647. https://doi.org/10.1519/jsc.0000000000002013.
     Google Scholar
  41. Schneider, M., & Cooper, D. M. (2011). Enjoyment of exercise moderates the impact of a school-based physical activity intervention. Int J Behav Nutr Phys Act, 8, 64. https://doi.org/10.1186/1479-5868-8-64.
     Google Scholar
  42. Skelly, L. E., Bailleul, C., & Gillen, J. B. (2021). Physiological Responses to Low-Volume Interval Training in Women. Sports Med Open, 7(1), 99. https://doi.org/10.1186/s40798-021-00390-y.
     Google Scholar
  43. Sloth, M., Sloth, D., Overgaard, K., & Dalgas, U. (2013). Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand J Med Sci Sports, 23(6), e341-352. https://doi.org/10.1111/sms.12092.
     Google Scholar
  44. Sökmen, B., Witchey, R. L., Adams, G. M., & Beam, W. C. (2018). Effects of Sprint Interval Training With Active Recovery vs. Endurance Training on Aerobic and Anaerobic Power, Muscular Strength, and Sprint Ability. J Strength Cond Res, 32(3), 624-631. https://doi.org/10.1519/jsc.0000000000002215.
     Google Scholar
  45. Steele, J., Plotkin, D., Van Every, D., Rosa, A., Zambrano, H., Mendelovits, B., Carrasquillo-Mercado, M., Grgic, J., & Schoenfeld, B. J. (2021). Slow and Steady, or Hard and Fast? A Systematic Review and Meta-Analysis of Studies Comparing Body Composition Changes between Interval Training and Moderate Intensity Continuous Training. Sports, 9(11), 155. https://www.mdpi.com/2075-4663/9/11/155.
     Google Scholar
  46. Stiegler, P., & Cunliffe, A. (2006). The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med, 36(3), 239-262. https://doi.org/10.2165/00007256-200636030-00005.
     Google Scholar
  47. Swanson, S. C., & Caldwell, G. E. (2000). An integrated biomechanical analysis of high speed incline and level treadmill running. Med Sci Sports Exerc, 32(6), 1146-1155. https://doi.org/10.1097/00005768-200006000-00018.
     Google Scholar
  48. Teixeira, P. J., Carraça, E. V., Markland, D., Silva, M. N., & Ryan, R. M. (2012). Exercise, physical activity, and self-determination theory: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 78. https://doi.org/10.1186/1479-5868-9-78.
     Google Scholar
  49. Toombs, R. J., Ducher, G., Shepherd, J. A., & De Souza, M. J. (2012). The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring), 20(1), 30-39. https://doi.org/10.1038/oby.2011.211
     Google Scholar
  50. Vechetti, I. J., Jr., Peck, B. D., Wen, Y., Walton, R. G., Valentino, T. R., Alimov, A. P., Dungan, C. M., Van Pelt, D. W., von Walden, F., Alkner, B., Peterson, C. A., & McCarthy, J. J. (2021). Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. Faseb j, 35(6), e21644. https://doi.org/10.1096/fj.202100242R.
     Google Scholar
  51. Vollaard, N. B. J., & Metcalfe, R. S. (2017). Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints. Sports Medicine, 47(12), 2443-2451. https://doi.org/10.1007/s40279-017-0727-x.
     Google Scholar
  52. Vollaard, N. B. J., Metcalfe, R. S., & Williams, S. (2017). Effect of Number of Sprints in an SIT Session on Change in V˙O2max: A Meta-analysis. Med Sci Sports Exerc, 49(6), 1147-1156. https://doi.org/10.1249/mss.0000000000001204.
     Google Scholar
  53. Warburton, D. E. R., & Bredin, S. S. D. (2017). Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol, 32(5), 541-556. https://doi.org/10.1097/hco.0000000000000437.
     Google Scholar
  54. Wewege, M., van den Berg, R., Ward, R. E., & Keech, A. (2017). The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev, 18(6), 635-646. https://doi.org/10.1111/obr.12532.
     Google Scholar
  55. WHO. (2020). WHO Guidelines on Physical ACtivity and Sedentary Behavior. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/336656/9789240015128-eng.pdf?sequence=1&isAllowed=y.
     Google Scholar
  56. Williams, D., Papandonatos, G., Napolitano, M., Lewis, B., Whiteley, J., & Marcus, B. (2006). Perceived Enjoyment Moderates the Efficacy of an Individually Tailored Physical Activity Intervention. Journal of Sport and Exercise Psychology, 28, 300-309. https://doi.org/10.1123/jsep.28.3.300.
     Google Scholar