Hematological and Ventilatory Responses to a 3900 M Altitude Sojourn in an Elite Wheelchair-marathoner
##plugins.themes.bootstrap3.article.main##
This case study aimed to report blood markers and resting respiratory rate (RR) oscillations at sea level, during a 5-wk 3900 m altitude sojourn, and after returning to sea level in a 36-year-old professional wheelchair marathoner. Outcome measures plasma erythropoietin (EPO) concentration, hemoglobin, reticulocytes count, erythrocytes and hematocrit as well as RR were measured upon wakening 7-weeks pre-altitude, 7-days pre-altitude, 35 hours after arrival to altitude, on days 8, 15, 21, 28 and 35 at altitude, 6 and 16 days after returning to sea level. EPO increased up to 259 % (31.6 U l-1) 35 hours upon arrival at altitude and decreased below pre-altitude level (12.2 U l-1) on the 21st day of the camp (8.7 U l-1), reaching the lowest values 16 days after returning from altitude (1.9 U l-1). All blood parameters, except for reticulocytes, increased (range: +17.9 to +23.8%) after 35 days of altitude exposure. Compared to pre-altitude, RR increased during the first week of exposure to hypoxic conditions and remained elevated throughout the camp until the fifth week (5.1±0.4 vs. 9.1±1.6 and 6.6±0.8 breaths min-1; Cohen´s d = +3.4 and +2.4, respectively). A 5-wk high-altitude sojourn triggered polycythemia and elevations in RR (as indicators of effective hypoxic acclimatization) in a professional wheelchair-marathoner.
References
-
Banchs, I., Casasnovas, C., Alberti, A., De Jorge, L., Povedano, M., Montero, J., et al. (2009). Diagnosis of Charcot-Marie-Tooth Disease. Journal of Biomedicine and Biotechnology, 2009, 985415. https://doi.org/10.1155/2009/985415.
Google Scholar
1
-
Berglund, B. (1992). High-altitude training. Aspects of haematological adaptation. Sports Medicine, 14(5), 289-303. https://doi.org/10.2165/00007256-199214050-00002.
Google Scholar
2
-
Brizuela Costa, G., Polo Rubio, M., Llana Belloch, S., & Pérez Soriano, P. (2009). Case study: effect of handrim diameter on performance in a paralympic wheelchair athlete. Adapted Physical Activity Quarterly, 26(4), 352-363. https://doi.org/ 10.1123/apaq.26.4.352.
Google Scholar
3
-
Buskirk, E. R., Kollias, J., Akers, R. F., Prokop, E. K., & Reategui, E. P. (1967). Maximal performance at altitude and on return from altitude in conditioned runners. Journal of Applied Physiology, 23(2), 259-266. https://doi.org/10.1152/jappl.1967.23.2.259.
Google Scholar
4
-
Chapman, R.F., Karlsen, T., Resaland, G.K., Ge, R.L., Harber, M.P., Witkowski, S., et al. (2014). Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. Journal of Applied Physiology, 116(6), 595-603. https://doi.org/10.1152/japplphysiol.00634.2013.
Google Scholar
5
-
Constantini, K., Wilhite, D. P., & Chapman, R. F. (2017). A clinician guide to altitude training for optimal endurance exercise performance at sea level. High Altitude Medicine and Biology, 18(2), 93-101. https://doi.org/10.1089/ham.2017.0020.
Google Scholar
6
-
Dill, D. B., & Adams, W. C. (1971). Maximal oxygen uptake at sea level and at 3,090-m altitude in high school champion runners. Journal of Applied Physiology, 30(6), 854-859. https://doi.org/10.1152/jappl.1971.30.6.854.
Google Scholar
7
-
Eckardt, K. U., Boutellier, U., Kurtz, A., Schopen, M., Koller, E. A., & Bauer, C. (1989). Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. Journal of Applied Physiology, 66(4), 1785-1788. https://doi.org/10.1152/jappl.1989.66.4.1785 Hackett, P. H., Rennie, D., Hofmeister, S. E., Grover, R. F., Grover, E. B., & Reeves, J. T. (1982). Fluid retention and relative hypoventilation in acute mountain sickness. Respiration, 43, 321-329. https://doi.org/10.1159/000194501.
Google Scholar
8
-
Heinicke, K., Heinicke, I., Schmidt, W., & Wolfarth, B. (2005). A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. International Journal of Sports Medicine. 26(5), 350-355. https://doi.org/10.1055/s-2004-821052.
Google Scholar
9
-
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278.
Google Scholar
10
-
Klein, M., Kaester, L., Bogdanova, A. Y., Minetti, G., Rudloff, S., Lundby, C., et al. (2021). Absence of neocytolysis in humans returning from a 3-week high-altitude sojourn. Acta Physiologica, 232(3), e13647. https://doi.org/10.1111/apha.13647.
Google Scholar
11
-
Levine, B. D., & Stray-Gundersen, J. (1997). “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. Journal of Applied Physiology, 83(1), 102-112. https://doi.org/10.1152/jappl.1997.83.1.102.
Google Scholar
12
-
Rasmussen, P., Siebenmann C, Diaz Molina, V., & Lundby, C. (2013). Red cell volume expansion at altitude: a meta-analysis and Monte Carlo simulation. Medicine & Science in Sports & Exercise, 45(9), 1767-1775. https://doi.org/10.1249/MSS.0b013e31829047e5.
Google Scholar
13
-
Rice, L., Ruiz, W., Driscoll, T., Whitley, C. E., Hachey, D. L., Gonzales, G. F., et al. (2001). Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass. Annals of Internal Medicine, 134(8), 652-656. https://doi.org/10.7326/0003-4819-134-8-200104170-00010.
Google Scholar
14
-
Sanz-Quinto, S., López-Grueso, R., Brizuela, G., Flatt, A. A., & Moya-Ramón, M. (2019). Influence of training models at 3900-m altitude on the physiological response and performance of a professional wheelchair athlete: A case study. Journal of Strength and Conditioning Research, 33(6), 1714-1722. https://doi.org/10.1519/JSC.0000000000002667.
Google Scholar
15
-
Sanz-Quinto, S., Moya-Ramón, M., Brizuela, G., Rice, I., Urbán, T., & López-Grueso, R. (2019). Nutritional strategies in an elite wheelchair marathoner at 3900 m altitude: a case report. Journal of the International Society of Sports Nutrition 16(1), 51. https://doi.org/10.1186/s12970-019-0321-8.
Google Scholar
16
-
Saugy, J. J., Schmitt, L., Cejuela, R., Faiss, R., Hauser, A., Wehrlin, J. P., et al. (2014). Comparison of “Live High – Train Low” in normobaric versus hypobaric hypoxia. PLoS One, 9(12), e114418. https://doi.org/10.1371/journal.pone.0114418.
Google Scholar
17
-
Schmidt, W., Eckardt, K. U., Hilgendorf, A., Strauch, S., & Bauer, C. (1991). Effects of maximal and submaximal exercise under normoxic and hypoxic conditions on serum erythropoietin level. International Journal of Sports Medicine, 12(5), 457-461. https://doi.org/10.1055/s-2007-1024713.
Google Scholar
18
-
Schoene, R. B., Lahiri, S., Hackett, P. H., Peters, R. M., Milledge, J. S., Pizzo, C. J., et al. (1984). Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. Journal of Applied Physiology, 56(6), 1478–1483. https://doi.org/10.1152/jappl.1984.56.6.1478.
Google Scholar
19
-
Schmidt, W., & Prommer, N. (2005). The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Journal of Applied Physiology, 95(5-6), 486-495. https://doi.org/10.1007/s00421-005-0050-3.
Google Scholar
20
-
Siebenmann, C., Robach, P., & Lundby, C. (2017). Regulation of blood volume in lowlanders exposed to high altitude. Journal of Applied Physiology, 123(4), 957-966. https://doi.org/10.1152/japplphysiol.00118.2017.
Google Scholar
21
-
Sperlich, B., Achtzehn, S., de Marées, M., von Papen, H., & Mester, J. (2016). Load management in elite distance German runners during 3-weeks of high-altitude training. Physiolical Reports, 4, e12845. https://doi.org/10.14814/phy2.12845.
Google Scholar
22
-
Stellingwerff, T., Peeling, P., Garvican-Lewis, L. A., Hall, R., Koivisto, A. E., Heikura, I. A., et al. (2019). Nutrition and altitude: strategies to enhance adaptation, improve performance, and maintain health: A narrative review. Sports Medicine, 49(Suppl2), 169-184. https://doi.org/10.1007/s40279-019-01159-w.
Google Scholar
23
-
Stover, E. A., Petrie, H. J., Passe, D., Horswill, C. A., Murray, B., & Wildman, R. (2006). Urine specific gravity in exercisers prior to physical training. Applied Physiology Nutrition and Metabolism, 31(3), 320-327. https://doi.org/10.52082/jssm.2021.26.
Google Scholar
24
-
Tanner, E. A., Montes, J., Manning, J. W., Taylor, J. E., DeBeliso, M., Young, J. C., et al. (2015). Validation of Hexoskin biometric shirt to Cosmed K4 b2 metabolic unit in adults during trail running. Sports Technology, 8, 118-123. https://doi.org/10.1080/19346182.2016.1248973.
Google Scholar
25
-
Zapico, A. G., Calderón, F. J., Benito, P. J., González, C. B., Parisi, A., Pigozzi, F., et al. (2007). Evolution of physiological and haematological parameters with training load in elite male road cyclists: a longitudinal study. Journal of Sport Medicine and Physical Fitness, 47(2), 191-196.
Google Scholar
26
-
Zelalem Tilahum, M., Diresibachew Haile, W., Milkessa Bayissa, M., Endeshaw Chekol, A., Teklie Mengie, A., & Ediget Abebe, Z. (2021). A comparative study of hematological parameters of endurance runners at Guna Athletics Sport Club (3100 meters above sea level) and Ethiopian Youth Sport Academy (2400 meters above sea level), Ethiopia. Journal of Sports Medicine. https://doi.org/10.1155/2021/8415100.
Google Scholar
27
Most read articles by the same author(s)
-
Santiago Sanz-Quinto,
Gabriel Brizuela,
Juan Manuel Alonso,
Carbon Racing Wheelchair Frames: Trespassing Technological Unfairness? , European Journal of Sport Sciences: Vol. 3 No. 1 (2024)