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ABSTRACT

Conventionally, non-exercise models to predict maximal oxygen uptake
(VO2max) have been built using the classical linear regression approach
and frequentist techniques for model selection. However, uncertainty
exists in the model selection process. The aim of this study was to develop d
a non-exercise model to predict VOj,,x in athletes, considering model
uncertainty by means of Bayesian Model Averaging (BMA). A further
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aim was to evaluate the predictive performance of the BMA in comparison
to models derived from standard variable selection techniques. The data
comprised 272 observations of the response variable, and records of Sex,
Sport, Age, Weight, Height and Body mass index. A categorization of
sports was also proposed for inclusion in the model-building process.
BMA was applied based on two recognized methods: Occam’s window
and Markov Chain Monte Carlo Model Composition. Discordance was
evident in variable selection among frequentist procedures. The two BMA
strategies yielded comparable results. In agreement with the literature, the
BMA showed better out-of-sample predictive performance than the models
selected by standard techniques. The categorization of sports revealed
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consistent results.

* Corresponding Author:
L . Lo e-mail: alongo@deportesar.gob.ar
Keywords: Data splitting, Model uncertainty, Predictive performance,

Weighted mixture of Student’s t-distributions.

1. INTRODUCTION

The maximal oxygen uptake (VOymayx) is a key determinant of cardiorespiratory fitness. VOoyax, also
referred to as maximal aerobic consumption, represents the highest rate at which oxygen can be taken
in, distributed, and consumed by an individual’s body during physical activity (Akalan ez al., 2004),
and is a measure of the capability of transferring energy via the aerobic pathway (McArdle er a/., 2015).
It is closely related to the physical ability known as Endurance, which is the physical and mental ability
to resist fatigue in relatively long duration efforts, and the ability to quickly recover after the efforts
(Grosseretal., 1989; Zintl, 1991). Direct measurement under laboratory conditions is the gold standard
for assessing VO,.x. However, it is complex and expensive because of the technological equipment
and qualified human resources required. Consequently, a large variety of maximal and submaximal
exercise tests have been designed for the indirect estimation of VOypax, such as the Astrand-Rhyming
cycle ergometer protocol, Bruce treadmill test, timed run tests developed by Balke and Cooper, 1-mile
steady-state jog of George et al., and the 20-meter multistage shuttle run test of Léger ef al. (Gibson
et al., 2019).

In contrast, statistical models have been proposed for predicting VO,n.x using variables not related
to exercise performance, which are also called non-exercise models. Maranhio Neto and Farinatti
(2003) conducted a systematic historical review of the literature and reported 20 models built using non-
exercise predictor variables. The predictors used were demographic data, anthropometric measures,
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resting heart rate, smoking level, daily physical activity level, and perceived fitness. All the models were
fitted using the classical linear regression approach. VO, Was expressed in absolute terms (L-min ')
and relative to body weight (ml-kg !-min—'). Anthropometric and demographic predictors included
age, sex, weight, height, body mass index, skinfold thicknesses, elbow diameter, leg volume, body
surface, and percentage of body fat. The oldest models, published in 1971, were proposed by Shephard
etal. (1971). A short time later, Bruce ez a/. (1973) were the first to use records of daily physical activity
level in the model-building process. Among others, the models developed by Jackson er al. (1990)
stand out because of the interest they have generated in the scientific community, covering an age
range between 20 and 70 years. In addition, the review included the works of George er a/. (1997) and
Mathews e al. (1999), in which the values of the predictor variables were obtained by self-reporting.
The models reported Adjusted R? values ranging from 0.22 to 0.87. Regardless of the variable selection
technique used, the common denominator in all these studies is the fact that the uncertainty about
the true model was not quantified. Subsequently, notwithstanding the machine learning algorithm
implemented, non-exercise models for VO,p,,x prediction were obtained following essentially the same
statistical practice, i.e., without explicitly accounting for model uncertainty. More examples can be
found in Malek ef al. (2004), Bradshaw et al. (2005), Malek et al. (2005), Wier et al. (2006), Sanada
et al. (2007), Duque et al. (2009), Nes er al. (2011), the overview of studies included in the work of
Abut et al. (2016), and the review papers of Alzamer e7 a/. (2021) and Ashfaq er al. (2022).

Conventionally, in a scenario with multiple candidate predictors, the final functional form of a
linear regression model is the result of the implementation of standard variable selection methods. The
emerging models are generally derived from selection criteria, such as Adjusted R? and Mallow’s Cp,
or from the implementation of selection variable algorithms, such as Forward, Backward or Stepwise
(Clyde, 2003). It is well known that these methods may lead to different solutions (Weisberg, 2005). A
main problem in the use of these selection strategies is that usually only one model is reported, virtually
assuming that there is only one model to explain the variability of the data (Clyde, 2003; Raftery,
1995). Model uncertainty, which is inherent to the modeling process, is not formally considered for
inference. Furthermore, the underestimation of model uncertainty involving the use of these procedures
may result in overconfident inferences, either for the model parameters or for the prediction of future
observations (Draper, 1995; Hodges, 1987; Hoeting er al., 1999; Raftery, 1996). The disadvantages of
ignoring this uncertainty have been recognized by numerous authors (e.g., the collection of scientific
articles edited by Dijkstra (1988). Bayesian Model Averaging (BMA) (Leamer, 1978; Madigan &
Raftery, 1994; Madigan & York, 1995) has been promoted in diverse disciplines as an alternative
solution to incorporate model uncertainty into the analysis. According to the BMA approach, the
competing models start with a prior probability and then obtain their posterior probabilities given the
data sample. The resulting model is the average of the individual models weighted by their posterior
probabilities (Hoeting er a/., 1999).

In particular, the model uncertainty in the VO,m,x prediction with non-exercise data has not been
explicitly considered. Conventionally, non-exercise models to predict VO, have been built using the
classical linear regression approach and frequentist techniques for model selection. Statistical analysis
has generally been performed following the standard methodology; that is, once a model is chosen,
the rest of the competing models are discarded, and the procedure continues as if the selected model
has generated the data (Hoeting ez «/., 1999). Thus, only the uncertainty due to random errors is
considered for inference, which is reflected in the confidence intervals for the model parameters and in
the prediction intervals for future observations. Nonetheless, the model uncertainty has generally been
underestimated in the statistical modeling of VO,,.x. However, uncertainty regarding the functional
form of the model in the field of linear regression may be substantial. More precisely, if k is the
total number of potential predictors, the number of linear combinations between them is equal to
2% (including the model with no predictors). For example, in the case of 15 predictors, the number
of possible linear models reaches 32,768. On the other hand, BMA is a modern approach from a
Bayesian perspective that provides a coherent mechanism to take into account model uncertainty
in the analysis (Clyde, 2003). Comparative studies have shown that BMA has a higher predictive
ability than any individual model selected using conventional procedures (Fernandez ez al., 2001a,
2001b; Hoeting ef al., 1999; Madigan & Raftery, 1994; Raftery e al., 1996, 1997). Furthermore, 90%
prediction intervals for future observations were constructed to compare the predictive performance
of linear models obtained according to established criteria (Hocting ez /., 1999; Raftery er al., 1997,
2005; Wintle et al., 2003). The goal of this research was to develop a linear model for predicting VO, ,x
(in L-min—") in athletes from basic anthropometric and demographic data by means of BMA, as an
alternative to the traditional frequentist techniques of model selection. A further goal was to compare
the predictive performance of the BMA with those of models selected using standard procedures.
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TABLE I. SUMMARY STATISTICS OF THE DATA

Males (n = 187) Females (n = 85)
VOsmax (L-min~1) 4.23+0.72 2.98 +0.50
Age (years) 22.0 £ 4.7 222453
Weight (kg) 754 £11.5 61.3+£8.0
Height (m) 1.79 £ 0.09 1.67 £ 0.09
Body mass index (kg-m~2) 235425 219+ 1.7

Note: Data are reported as mean =+ standard deviation.

2. MATERIALS AND METHODS

2.1. Subjects

Data used were records of 272 male and female athletes of the following sports disciplines:
Athletics Races (Middle-distance and Long-distance Running), Boxing, Combined Winter Sports
(Duathlon, Triathlon and Tetrathlon), Cross-country Skiing, Cycling, Kayaking, Field Hockey, Futsal,
Handball, Judo, Karate, Rowing, Rugby, Speed Skating, Swimming, Tackwondo, Tennis, Volleyball
and Wrestling. The database was provided by the Exercise Physiology Laboratory of the National
Center of High-Performance Athletics (CeNARD) in Buenos Aires, Argentina. All procedures were
conducted in accordance with the ethical principles of the Declaration of Helsinki of the World Medical
Association (World Medical Association (WMA), 2024).

2.2. Study Design

This study used an observational cross-sectional design. Data were collected under laboratory
conditions. VO;,x Was assessed by maximal incremental exercise testing using either a treadmill,
cycling ergometer, kayaking ergometer, or rowing ergometer. The VO, data were collected with
the breath-by-breath method through a computerized open-circuit metabolic system (Medgraphics
Cardiopulmonary Exercise System CPX/D, Breeze Ex v3.06 software; Medical Graphics Corporation,
St. Paul, MN, USA). The VO, plateau was the primary criterion for the determination of VOy,ax (VO,
difference < 150 ml-min~"! or 2.1 ml-kg~'-min~! given an additional increment in work rate); secondary
criteria were: exchange respiratory rate > 1.1 and heart rate & 10 beats-min~' of the age-predicted
maximal heart rate (American College of Sports Medicine, 2009; Howley er a/., 1995; O’Connor et al.,
2009). Age was computed in decimals. Weight and Height were measured using a height and weight
scale (CAM 1001, Argentina) and expressed in kilograms and metres, respectively. And Body mass
index was calculated as the ratio of weight to height squared (kg-m~2). Table I displays the sex-stratified
summary statistics of the data.

2.3. Proposed Predictors

In order to predict VO,,« in athletes with non-exercise data, we evaluated six potential anthropo-
metric and demographic explanatory variables. Sex and Sport were categorical variables, whereas the
remaining four were continuous variables: Age, Weight, Height and Body mass index. Considering
the large sample variability of sports, the small number of observations in some of them, and certain
similarities, the following grouping strategy was considered. An elemental classification divides sports
into two main groups: Acyclic and Cyclic. Acyclic sports involve varied and discontinuous motor
actions that are typically performed at variable intensities, durations, and frequencies. Based on the
available data, this group was subdivided into two categories: Combat sports (Boxing, Judo, Karate,
Taekwondo and Wrestling) and Game sports (Field Hockey, Futsal, Handball, Rugby, Tennis and
Volleyball). On the other hand, Cyclic sports, which are mostly classified as endurance sports, are
disciplines such as Athletics Races, Cycling, Kayaking and Swimming. These sports are characterized
by continuous and repetitive movement patterns and, in general, by a noteworthy contribution of the
oxidative energy pathway. This grouping strategy is based on bioenergetic and biomechanical aspects
and on competition characteristics, and is consistent with the works of Neumann (1988), Platonov
(2001), and Bompa and Haff (2009). Furthermore, given the diversity of endurance sports included,
a subdivision was proposed into two categories, taking into account the extent of development of
aerobic power, which is strongly determined by the intrinsic characteristics of the discipline. A first
level, denoted as Endurance 1, comprised Kayaking, Speed Skating and Swimming; a second level,
referred to as Endurance 2, embraced Athletic Races (Middle-distance and Long-distance Running),
Combined Winter Sports (Duathlon, Triathlon and Tetrathlon), Cross-country Skiing, Cycling and
Rowing (Astrand ez al., 2003; Kenney er al., 2022). Therefore, four categories for the factor Sport were
defined: Combat (n = 48), Game (n = 89), Endurance 1 (n = 51) and Endurance 2 (n = 84).
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2.4. Statistical Analysis

The records of VOymax, Age, Weight, Height and Body mass index were initially summarized as the
mean =+ standard deviation. One dummy variable was generated for Sex, and three dummy variables
were generated for Sport, which, together with Age, Weight, Height and Body mass index, totaled
eight candidate predictors of VOy.x. First, we fitted the models using ordinary least squares (OLS)
linear regression. Following Raftery er a/. (1997) and Hoeting ez «/. (1999), the Maximum Adjusted
R? and Minimum Mallow’s Cp criteria and the Stepwise regression method were used to obtain the
“best” subset of predictors. Stepwise regression was performed in two versions, according to the entry
and stay significance level employed: « = 0.15 and o« = 0.05. The Pearson correlation coefficient
(r) was used to test the linear association between continuous variables, and multicollinearity was
assessed via the variance inflation factor. Subsequently, the BMA method was applied. Due to the
lack of literature on the relative plausibility of the different combinations of variables under the
Bayesian approach, a neutral option was implemented, and BMA was carried out assuming equal
prior probabilities for all variable combinations. In the first step, this was performed using the BIC’
approximation to compute the posterior model probabilities and the Occam’s window procedure to
select the models to be averaged (Raftery, 1995). For this purpose, we used the function bicreg of the
BMA package (Raftery ez a/., 2022). The assumptions of the normal linear model and the study of
advanced diagnostics for multiple regression in the selected models were also tested. In the second
step, BMA was conducted based on the Markov Chain Monte Carlo Model Composition (MC?)
method, following the proposal of Fernandez er al. (2001a), using the function bms in the BMS
package (Feldkircher e al., 2022). However, given the moderate number of models to be averaged
(2% = 256 possible linear combinations of predictor variables), the model averaging was computed by
the complete enumeration of the model space instead of the approximation via the Markov Chain
Monte Carlo sampling procedure. To compare the predictive performance of the models, 20 data splits
were generated through repeated stratified random subsampling. Two-thirds of the data were assigned
to the Training subset to build the models, and one-third of the data were assigned to the 7esting
subset to evaluate predictive performance (Dobbin & Simon, 2011). Subsequently, 90% prediction
intervals were generated. In the models selected by the frequentist techniques, they were constructed
following classical methodology (Walpole e «/., 2007). To evaluate the predictive performance of
the BMA via Occam’s window, weighted mixtures of location-scale Student’s t-distributions were
computed with the function rMit in the AdMit package (Ardia ez «/., 2022), and the corresponding
90% prediction intervals were obtained with the function quantile. Given the implemented subsampling
procedure, 90 weighted mixtures of location-scale Student’s t-distributions were computed for each
data split, generating a total of one thousand and eight hundred distributions. To evaluate the predictive
performance of the BMA by MC?, the weighted mixtures of location-scale Student’s t-distributions
in the 20 data splits were made with the function pred.density in the BMS package, and the function
quantile was used to obtain the corresponding 90% prediction intervals. All analyses were performed
in R software environment version 4.4.0 (R Core Team, 2024).

3. RESULTS

3.1. Frequentist Analysis

The least squares linear regression on the full model yielded R? = 0.8125 and a residual standard
error = 0.3848 L-min~!. It is worth noting the negligible contribution of the dummy variable
corresponding to the sports category Game. On the other hand, the correlation structure among
Weight, Height and Body mass index (0.18 <r < 0.80, P < 0.01) led to multicollinearity problems and
over-parameterization of the model. The results of the linear regression analysis performed with all
the candidate predictors are presented in Table I1.

As mentioned previously, there were two hundred and fifty-six possible linear regression models
for fitting. Three popular techniques were used to select the “best” subset of predictors: Maximum
Adjusted R?, Minimum Mallow’s Cp and Stepwise regression. Stepwise regression was implemented in
two ways, based on the entry and stay significance level employed: « = 0.15 and & = 0.05. The selected
models are presented in Table I1I. Model uncertainty was reflected in the discrepancies observed
among the applied selection methods. According to the Maximum Adjusted R? and Minimum
Mallow’s Cp criteria, the best model included dummies for Sex Male, Sport Endurance 1 and Sport
Endurance 2, and Age, Height and Body mass index (R? = 0.8124; residual standard error = 0.3835
L-min~'). Instead, Stepwise regression selected the same dummy variables but not the same continuous
variables. Moreover, the model derived from the Stepwise procedure with an entry and stay significance
level of 0.15 included the continuous variables Age, Weight and Height (R? = 0.8115; residual standard
error = 0.3844 L-min~!), while Weight was the only continuous variable retained when using an entry
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TABLE II: LEAST SQUARES LINEAR REGRESSION ANALYSIS ON THE FULL MODEL

Coefficient SE t value p-value VIF
Intercept -5.7295 3.95 -1.45 0.15
X1: Sex Male 0.5274 0.07 7.63 < 0.001 1.89
X»: Sport Game 0.0131 0.08 0.16 0.88 2.79
X3: Sport 0.2920 0.08 3.57 < 0.001 1.88
Endurance 1
X4: Sport 0.6182 0.08 7.64 < 0.001 2.57
Endurance 2
Xs: Age 0.0108 0.005 2.09 0.04 1.17
X¢: Weight 0.0097 0.03 0.35 0.72 211.70
X7: Height 3.2426 2.24 1.45 0.15 105.74
Xg: Body mass 0.1022 0.09 1.19 0.24 79.27
index

Note: SE: Standard error; VIF: Variance inflation factor.

TABLE III: MODELS SELECTED BY MAXIMUM ADJUSTED RZ, MINIMUM MALLOW’S CP AND STEPWISE REGRESSION

Coefficient SE t value p-value VIF
Adjusted R? and
Mallow’s Cp
Intercept -7.1327 0.50 -14.37 < 0.001
X1: Sex Male 0.5186 0.06 8.55 < 0.001 1.46
X3: Sport 0.2854 0.06 4.52 < 0.001 1.12
Endurance 1
Xy4: Sport 0.6129 0.06 10.48 < 0.001 1.35
Endurance 2
Xs5: Age 0.0109 0.005 2.12 0.04 1.16
X7: Height 4.0502 0.25 15.89 < 0.001 1.37
Xg: Body mass 0.1322 0.01 12.43 < 0.001 1.21
index
Stepwise (¢ = 0.15)
Intercept —1.1350 0.54 -2.10 0.04
X1: Sex Male 0.5384 0.06 8.92 < 0.001 1.44
X3: Sport 0.2785 0.06 4.40 < 0.001 1.12
Endurance 1
X4: Sport 0.5961 0.06 10.22 < 0.001 1.34
Endurance 2
Xs: Age 0.0106 0.005 2.06 0.04 1.16
X¢: Weight 0.0419 0.003 12.35 < 0.001 3.24
X7: Height 0.6611 0.39 1.71 0.09 3.13
Stepwise (¢ = 0.05)
Intercept -0.0722 0.15 -0.49 0.63
X1: Sex Male 0.5460 0.06 9.04 < 0.001 1.42
X3: Sport 0.2783 0.06 4.37 < 0.001 1.12
Endurance 1
X4: Sport 0.6504 0.05 11.99 < 0.001 1.14
Endurance 2
X¢: Weight 0.0463 0.002 20.46 < 0.001 1.42

Note: SE: Standard error; VIF: Variance inflation factor.

and stay significance level of 0.05 (R? = 0.8073; residual standard error = 0.3873 L-min~!). However,
the substantial decrease in the magnitude of the multicollinearity statistic in these three models is
noteworthy.

3.2. Bayesian Model Averaging

First, BMA was performed using the BIC’ approximation to compute the posterior model prob-
abilities (PMP’s) and the Occam’s window procedure to select the models to be averaged. Table IV
displays the location (post mean) and scale (post SD) measures for the posterior distributions of the
regression coefficients of the model. Table IV also reports the posterior inclusion probability (PIP)
of each of these coefficients, which is the probability that the coefficient value is other than zero
given the data, and results from the sum of the PMP’s of the models that contain that coefficient.
Table V lists the nine selected individual models with their respective PMP’s. As part of the analysis, the
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TABLE IV: BMA MobELs DERIVED FroM THE OccaM’s WINDOW AND MC? METHODS

Post mean Post SD PIP
Occam s window

Intercept -1.4531 2.67 1
X1: Sex Male 0.5405 0.06 1

X»: Sport Game 0.0019 0.02 0.04
X3: Sport Endurance 1 0.2811 0.06 1
X4: Sport Endurance 2 0.6406 0.06 1

Xs: Age 0.0026 0.005 0.26

X6: Weight 0.0374 0.02 0.81

X7: Height 0.8066 1.55 0.29

Xg: Body mass index 0.0237 0.05 0.26

MC3

Intercept -1.4704 - 1
X1: Sex Male 0.5386 0.06 1

X»: Sport Game 0.0026 0.02 0.07
X3: Sport Endurance 1 0.2800 0.07 1
X4: Sport Endurance 2 0.6385 0.06 1

Xs: Age 0.0026 0.005 0.26

X6: Weight 0.0370 0.02 0.82

X7: Height 0.8251 1.57 0.30

Xg: Body mass index 0.0243 0.05 0.27

Note: post: posterior; SD: Standard deviation; PIP: Posterior inclusion probability.

TABLE V: POSTERIOR MODEL PROBABILITIES OF THE NINE MODELS SELECTED BY OCCAM’S WINDOW AND THE TEN BEST MODELS
ACCORDING TO MC?

Model X] Xg X3 X4 X5 Xﬁ X7 Xg PMP
Occam’s window
1 ° . . ° 0.4624
2 . ° ° ° ° 0.1326
3 ° ° . . . 0.1175
4 ° ° ° . ° . 0.0696
5 . ° ° ° . 0.0684
6 ° . ° ° . 0.0530
7 ° . . . . . 0.0360
8 . . . ° ° 0.0359
9 ° . . . . . 0.0246
McC?
1 ° . . ° 0.4511
2 ° ° ° ° ° 0.1244
3 ° ° ° ° ° 0.1102
4 ° ° ° . ° 0.0652
5 . ° ° . ° . 0.0621
6 ° ° . . . 0.0506
7 . . . . . 0.0346
8 ° . . . . . 0.0326
9 . . . . ° ° 0.0225
10 ° ° ° . . . 0.0110

Note: X;: Sex Male; X ,: Sport Game; X 3: Sport Endurance 1; X 4: Sport Endurance 2; Xs: Age; X4: Weight; X7: Height; X5:
Body mass index; PMP: Posterior model probability.

assumptions of the normal linear model and the study of advanced diagnostics for multiple regression
in the selected models were evaluated. Neither violations of the assumptions of the normal linear model
nor influential observations were found. Furthermore, the VIF values did not indicate multicollinearity
in the averaged models (maximum VIF = 3.24). The R? statistics in these models fluctuated between
0.8073 and 0.8124. As shown in Table V, the model chosen by Stepwise regression with « = 0.05
showed the highest PMP. According to this criterion, the model selected by Maximum Adjusted R?
and Minimum Mallow’s Cp ranked fourth, while the model that emerged from the Stepwise regression
with o = 0.15 placed in the seventh position.

In the second step, BMA was conducted based on the MC? method. The results obtained for the
regression coefficients were similar to those achieved using the Occam’s window method (see Table V).
Table V also reports the individual models with a PMP higher than 0.01 according to MC?. It is worth
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Sex.Male

Sport. Game
Sport.Endurance1
Sport. Endurance2
Age

Weight

Height

Body.Mass.Index

i —
0 0.45 0.58 0.69 081 0.9 096

Cumulative Probability

Fig. 1. Predictor variables and cumulative probability of the ten best models according to MC3; the grey rectangles
indicate a positive sign for the regression coefficient, the black rectangles a negative sign, and the white rectangles
exclusion.

mentioning that, among the sets of predictors that included multicollinear variables (i.e., combinations
including Weight, Height and Body mass index), the highest PMP was 0.0073; one of them was the
full model, with a PMP equal to 0.0002. It can also be verified in Table V that the best nine models
according to MC? are the same as those selected by Occam’s window, and with very similar PMPs.
Moreover, the ranking determined by the PMP for the models selected by frequentist techniques was
virtually the same for the two BMA strategies applied. Additionally, Fig. | illustrates the contribution
of the ten individual models with the highest weights in the BMA model obtained by MC3. The rows
in the figure correspond to the variables, and the columns refer to the models. The models were located
from left to right in descending order according to their PMP’s. The predictors included in each model
were identified on the vertical axis, whereas the horizontal axis displays the cumulative posterior model
probabilities. The grey and black rectangles indicate that the predictor of that row is included in the
model of the given column. The grey color indicates a positive sign for the regression coefficient, the
black color indicates a negative sign for the regression coefficient, and the white rectangles indicate
exclusion. The sum of the lengths of the grey and black rectangles corresponding to each predictor is
approximately proportional to the PIP, as displayed in Table V.

3.3. Predictive Performance Comparison

The BMA models built using the Occam’s window and MC? strategies showed, on average, a better
predictive performance than the ones selected by Maximum Adjusted R?, Minimum Mallow’s Cp and
Stepwise regression in the 20 data splits. Moreover, the two BMA models showed very similar abilities
to predict future responses. They reached the best predictive coverage twice as often as the models
chosen by the frequentist methods, and the worst one-third as often. Table VI presents a comparative
summary of the predictive coverage of the models considered in the 20 data splits.

4. DISCUSSION

4.1. General Considerations

Several scientific papers have pointed out that underestimation of the uncertainty about the func-
tional form of the statistical model may have negative consequences for inference. Thus, Raftery ez a/.
(1997) and Hoeting ez al. (1999) showed that ignoring model uncertainty leads to an overestimation
of confidence in estimations. In the present study, a practical approach to firm theoretical grounds
was used for inference with a normal linear regression model to predict VOjpax Using non-exercise
data, which explicitly takes into account model uncertainty in the modeling process. In this regard,
BMA represents a coherent way to objectively consider model uncertainty in the analysis. Although
this method has been applied in diverse research areas, no references have been found regarding its
application for the statistical modeling of VOy,.x With non-exercise data. The Bayesian methodology
implemented provides a clear and accurate interpretation of the results and constitutes a direct
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TABLE VI: BMA MODELS VERSUS MODELS SELECTED BY STANDARD FREQUENTIST METHODS: NUMBER OF TIMES WITH BEST AND
WORST PREDICTIVE PERFORMANCE AND STATISTICAL SUMMARY OF THE PREDICTIVE COVERAGE OF THE 90% PREDICTION INTERVAL
IN THE TWENTY DATA SPLITS

Method Number of times Predictive coverage (%)
Best Worst Minimum Mean Maximum
BMA (Occam’s 14 3 81.1 88.9 96.7
window)
Adjusted R? 7 10 80.0 88.1 97.8
Mallow’s Cp 8 9 82.2 88.2 97.8
Stepwise (¢ = 0.15) 6 10 78.9 88.0 97.8
Stepwise (« = 0.05) 9 9 78.9 88.2 96.7
and BMA (MC?)

BMA (MC?) 14 3 80.0 88.9 96.7
Adjusted R? 8 10 80.0 88.1 97.8
Mallow’s Cp 8 9 82.2 88.2 97.8
Stepwise (¢ = 0.15) 6 10 78.9 88.0 97.8
Stepwise (¢ = 0.05) 8 9 78.9 88.2 96.7

instrument for posterior inference. Moreover, posterior model probabilities are a valuable formal
means of weighting competing individual models. In addition, BMA preserves the essence of the
Bayesian approach by allowing for an inferential interpretation of the model parameters. However,
the literature employing frequentist solutions to incorporate model uncertainty in the analysis is far
from extensive. A possible frequentist alternative cited by Raftery (1995) and Hoeting ez a/. (1999) is
Bootstrap (Efron, 1979). However, Freedman ez a/. (1988) demonstrated that this technique does not
necessarily yield satisfactory results.

In this research, BMA was performed following two strategies: on a reduced number of models
(Occam’s window), and exhaustively, taking into account all possible combinations of predictors
(MC?). Common frequentist model selection techniques were also applied for comparison purposes.
The first BMA strategy implemented, i.e., the BIC’ approximation for the calculus of the posterior
model probabilities and the Occam’s window procedure for the identification of the models best
supported by the data, has the advantage that it can be performed with the information provided
in the output from the conventional statistical model-fitting software (Raftery, 1995). The second
strategy applied was based on the proposal of Fernandez ez a/. (2001a), which allows for the analytical
computation of posterior model probabilities. It is worth mentioning that, even though the final
functional form is in both cases a weighted average of models, the individual models (at least those with
a substantial contribution to the final functional form) are not exempt from checking the assumptions
of the normal linear model and from the analysis of the advanced diagnostics for multiple regression
(Raftery, 1995).

4.2. Analysis and Interpretation of the Results

The output of the BMA analysis carried out using the Occam’s window method was practically
equivalent to that obtained by applying the MC? method. Both procedures yielded comparable location
and scale measures for the posterior distributions of the regression coefficients, as well as similar
posterior model probabilities.

The BMA model confirmed the high explanatory power of Sex on VO;,x. Holding the values of
all the other predictor variables constant, the estimated difference between males and females was
0.54 L-min~'. This difference expressed relative to body weight represents 7.7 ml-kg~!-min~! for a
typical body weight of 70 kg. George er al. (1997) proposed a prediction model using non-exercise
data in a population of physically active university students (18-29 years), which showed a similar
difference between the sexes (7.0 ml-kg~!-min~"). In addition, Wu and Wang (2002) built a non-exercise
model using data of 20- to 30-year-old workers that revealed a higher difference between males and
females (1.27 L-min~"). However, the latter study had a small sample size (n = 24). Kenney e7 a/. (2022)
published VO,.x normative data (in ml-kg~'-min—') for athletes from diverse disciplines. The sex
differences reported in these data were generally similar in direction and magnitude to the differences
obtained from the BMA model predictions. Nonetheless, the grouping proposed for sports disciplines
revealed reasonable results. The subclassification of Acyclic sports into Combat and Game sports found
little support in the data. The BMA analysis assigned a very low PIP to this subdivision (P < 0.1),
giving more weight to more parsimonious models resulting from combining both types of disciplines
into the broader group of Acyclic sports. In contrast, the data strongly supported the subclassification
proposed for endurance sports into the categories Endurance 1 and Endurance 2; the BMA analysis
revealed a PIP = 1 for the dummy variable corresponding to this partition. The difference in the values
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of the linear parameters favored the category Endurance 2 by 0.36 L-min~!. For a reference body weight
of 70 kg and under equal values for the rest of the explanatory variables, this difference represents 5.1
ml-kg~"-min~!, which also fits the normative values given by Kenney e a/. (2022).

Regarding the continuous regressors, Weight was the most relevant predictor, with a PIP > 0.8, while
Age, Height and Body mass index showed lower predictive contributions in the BMA model, with PIP
values between 0.26 and 0.30. On the other hand, as is evident from Fig. |, when Body mass index and
Height were entered into the same individual model, Body mass index was positively related to VOopax,
while this relationship became negative when Body mass index and Weight were entered into the same
individual model. These results are congruent with the uncertainty about the statistical model that best
explains the data-generation process. In addition, the exhaustive nature of the MC? strategy explains
the small weights assigned to the models with a high level of multicollinearity. More specifically, the
models including Weight, Height and Body mass index, barely accumulated a PMP of one percent
(0.0121). The BMA via Occam’s window did not include any of these models.

In terms of point estimation, the BMA model was contrasted with a widely known non-exercise
model, that is, the body mass index-based model of Jackson e «/. (1990). To attain a fair comparison,
the highest value of the Physical Activity Rating (PAR) score was considered for the latter model,
which corresponded to the highest level within the group of subjects who participated regularly in
heavy physical exercise (PAR = 7). The continuous predictor variables were as follows: Age = 25
years, Weight = 68 kg, Height = 1.80 m, Body mass index = 21 kg-m~2. For this set of values, the
body mass index-based model of Jackson e a/. (1990) predicted a VOapmax of 44.5 ml-kg=!-min~! for
females and 55.4 ml-kg~!-min~! for males. In contrast, the VO« predictions (related to body weight)
produced by BMA for Acyclic sports (Combat and Game), Endurance 1 sports and Endurance 2 sports
are, respectively, 45.7, 49.8 and 55.1 ml-kg~'-min~! for females, and 53.6, 57.7 and 63.0 ml-kg~!-min~!
for males.

It is worth mentioning that the results of either the frequentist or the Bayesian analyses resulted
in fairly similar regression coefficients for the categorical variables, with the exception of the dummy
corresponding to the sports category Game, which is absent in the models selected using the frequentist
techniques. The difference in value of the coefficients from the two approaches were smaller than
0.05 L-min . Nevertheless, discrepancies were observed in the choice of continuous variables among
the frequentist selection procedures (see Table V). Interestingly, the model selected by the frequentist
stepwise regression when o = 0.05 was best supported by the data in terms of posterior model
probability (PMP =~ 0.5). On the other hand, it is worth noting that the individual models with
substantial weights in the BMA exhibited an appreciable fit, reaching R? values above 0.8.

One way to judge the validity of a model is to evaluate its ability to predict future responses (Raftery
et al., 1996). Several scientific papers showed that BMA provides a higher predictive performance than
any particular model that might reasonably be selected by a traditional technique (Madigan & Raftery,
1994; Raftery et al., 1996; Raftery et al., 1997; Hoeting et al., 1999; Fernandez et al., 2001a; 2001b),
and consistent results with this premise were found in the current research. The coverage of the 90%
prediction interval of the BMA averaged 8§9% over the 20 data splits, against an average of 88% found in
the models derived from the frequentist model selection strategies. Moreover, BMA generally reached
the maximum predictive coverage recorded for each data split. Raftery er «/. (1997) and Hoeting ez al.
(1999) assessed the out-of-sample predictive performance of linear regression modeling using the 90%
prediction interval method. They found larger differences in the predictive coverage in favor of the
BMA model in comparison with models selected by frequentist methods (between 2 and 22%). Raftery
et al. (1997) also found differences as high as 6% in predictive coverage in favor of the MC? method
over the Occam’s window method. Nonetheless, the number of predictors in these studies was nearly
twice the number of predictors considered in this study.

The underestimation of model uncertainty that entails the choice of a particular model to explain a
determined phenomenon may affect the results of the statistical inference for the quantities of interest
associated with the phenomenon (Hoeting er a/., 1999). In the present study, this underestimation
was reflected by a lower predictive coverage for new observations in the models selected by standard
frequentist techniques, compared to the BMA models fitted either through Occam’s window or the
MC? strategy.

4.3. Consequences and Applications

Raftery (1995) pointed out that, given a wide set of candidate independent variables, the standard
model selection techniques tend to find evidence for non-substantive effects; because of reasons related
to statistical power, this trend becomes stronger with the increase in sample size. On the other hand, in
BMA, all possible predictor combinations are weighted based on sample evidence. Simulation studies
performed by Raftery (1995) and Raftery er a/. (1997) showed that BMA tends to parsimony when
there is no signal in the data suggesting a relationship between the predictors and the response variable.
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With regard to the choice between the two BMA strategies we employed, the decision depends
on the goal of the research, either parameter estimation or prediction. Occam’s window tends to be
computationally faster and more appropriate when the inference of the parameters in the model is the
most important. However, the exhaustive nature of MC? generates more accurate predictions with a
higher computational demand. Nevertheless, these two approaches are sufficiently flexible to succeed
in both situations (Raftery ez a/., 1997).

A non-exercise VOrax prediction model represents a simple, practical and useful tool for sports
evaluation. The current study developed a BMA model for predicting VO, in athletes using
basic anthropometric and demographic data. Models obtained using frequentist variable selection
techniques have also been reported. A categorization of sports was proposed for its inclusion in the
model-building process, allowing it to cover a wide variety of disciplines. Moreover, no studies have
been found in the literature on non-exercise models for athletic populations that include sports as an
explanatory variable. In addiiton, the BMA framework offers a reasonable solution to the problem
of adding more predictors to the modeling process: the larger the number of candidate variables, the
larger the number of competing models, and thus, the greater the model uncertainty. Furthermore,
considering the constant development in computational power, the BMA approach becomes natural.
However, making use of prior information about the plausibility of the models to be averaged is a
matter that deserves future investigation. It would also be advisable to collect more observations from
different sports disciplines to evaluate more specific sports classifications, aiming to attain a higher
explanatory power of VO, variability.

Overall, the implementation of BMA for the modeling of VO,,,x with non-exercise data represents
an original contribution, which is in line with the growth of the Bayesian approach in applied statistics.

5. CONCLUSIONS

Discordances were observed among frequentist techniques in the selection of available variables for
predicting VO« in athletes. BMA provided a coherent and effective solution to the model uncertainty
problem. By this method, all competing models were evaluated, taking into account the contributions
of all variables. The combination of predictors with a high level of multicollinearity had very low
posterior probabilities. The individual models that were best supported by the data displayed an
appreciable fit. The BMA showed a higher predictive performance than the models derived from the
least squares variable selection procedures. The frequentist and Bayesian approaches yielded similar
VOomax estimates for combat and game sports. Finally, the results obtained from both procedures
support the proposed sub-classification for endurance sports.
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